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LOCAL INSTABILITY OF HORIZONTAL TUNNELS

OF POLYGONAL SHAPE IN VISCOELASTOPLASTIC MASSES

UDC 539.374D. V. Gotsev, I. A. Enenko, and A. N. Sporykhin

The local instability of a horizontal mine tunnel with a regular polygonal cross section in a viscoelasto-
plastic rock mass is studied within the framework of the exact three-dimensional stability equations.
The effect of rock-mass parameters on the critical pressure is estimated.

Key words: local instability, mine tunnels, viscoelastoplastic medium.

It is known that the solution of mining engineering problems related to roadway construction and oil- and
gas-well drilling reduces to the formulation and solution of problems of the local instability of rock masses in the
neighborhood of tunnels under elastoplastic strains [1–4]. This is due to the fact that around tunnels and wells, the
stresses at even small depths up to 1 km exceed the rock strength limit, because of which the rock reaches the state
of inelastic deformation before the onset of local buckling. The first stage of the solution of this problem consists
of finding the stress–strain state of infinite space under dead weight with an infinite cylindrical tunnel having a
regular polygonal cross section. The second stage consists of solving the linear problem of stability, i.e., finding the
critical pressure distributed uniformly over the tunnel contour. Unlike in [2], in the present paper, we study the
local instability of the rock in the near-wellbore zone of a horizontal tunnel with a polygonal cross section using the
exact three-dimensional equations of [5]. The properties of the near-wellbore rock are simulated by the relations of
a viscoelastoplastic body with translational hardening [6, 7].

In this case, the loading function is given by

F = (Sj
i − c(εj

i )
pl − η(ej

i )
pl)(Si

j − c(εi
j)

pl − η(ei
j)

pl)− k2, (1)

and the relations of the associate flow law are written as

(ej
i )

pl = λ(Sj
i − c(εj

i )
pl − η(ej

i )
pl). (2)

Here c is the hardening coefficient, η is the viscosity coefficient, k is the yield strength, Sj
i = σj

i − σδj
i is the stress

tensor deviator, σ = σk
k/3, δj

i is the Kronecker delta, εj
i are the strain tensor components, ej

i are the strain rate
tensor components, and λ is a positive factor.

Investigation of the basic state of a body of volume V characterized by the displacement vector ůi(xk, t), the
stress tensor σ̊j

i (xk, t), and the vector of volume XX̊i and surface P̊i forces reduces to solving a system of variational
differential equations subject to appropriate boundary conditions [4].

The equilibrium equations for the regions of plastic (V pl) and elastic (V el) strains are written as

∇i(σi
j + σ̊i

α∇αuj) + Xi − ρs2uj = 0, s = iω. (3)

The boundary conditions on the outer surface Spl
p (accordingly Sel

p ) are given by

Ni(σi
j + σ̊i

α∇αuj) = pj , uj

∣∣∣
r→∞

→ 0. (4)

In this case, pi = p̊k∇kuj and Xi = X̊k∇kuj for “follower” loading and pi = Xi = 0 for “dead” loading. Here and
below, ∇ denotes covariant differentiation, the superscripts “el” and “pl” denote quantities that refer to the elastic
or plastic region, respectively, and a circle at the top denotes the components of the basic unperturbed state.
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The continuity conditions on the elastoplastic boundary γ are given by

[Ni(σi
j + σ̊i

α∇αuj)] = 0, [ui] = 0. (5)

For an incompressible viscoelastoplastic material in the case of an inhomogeneous basic state in the plastic
and elastic regions, the relationship between the peak values of the stresses and displacements can be written as

σij = εαβaα
ijg

αβ + 2µεij + ε12a
4
ij + pgij . (6)

The coefficients as
ij have the form

a1
ij = afij(−2f11 + r2f22)/3, a2

ij = afij(f11 − 2r2f22)/3, a3
ij = afij(f11 + r2f22)/3,

a4
ij = −2afijf12, fij = S0

ij − cε̊pl
ij , a = 4µ2/(k2(2µ + c + ηs)),

(7)

where p is the Lagrangian factor, s = iω (ω = α + iβ), and µ is the Lamé parameter. For a = 0, relations (6) and
(7) correspond to the elastic region.

System (3)–(7) is a closed system of equations for stability problems in which there is an interface between
the regions of elastic and plastic behavior of the material under loading.

A rock mass with a horizontal tunnel having a regular polygonal cross section (with rounded angles) will
be modeled by an infinite weightless plate with a polygonal hole of radius RB , whose contour is subjected to a
uniformly distributed load q0 (the fluid or gas pressure on the tunnel). The quantity of q0 is such that the plastic
region completely encompasses the tunnel contour. At infinity, the stresses in the plate tend to the quantity gh

(g is the volumetric weight of the rock and h is the tunnel depth), i.e., the inherent stress in the rock mass (before
tunnel boring) is considered hydrostatic.

In the determination of the components of the basic stress–strain states, all functions are written as series in
powers of a small parameter δ that characterizes the deviation of an unperturbed state from the initial state, i.e.,
the deviation of a circle of radius R0 from the regular polygon (B-gon) whose contour is given by

RB =
∞∑

n=0

δnR
(n)
B = R0

(
1 + δ cos Bθ − 3

4
δ2d′2(1− cos 2Bθ + . . .)

)
, 0 6 θ 6 2π,

{σij , ε
pl
ij , ε

el
ij , e

pl
ij , . . .} =

∞∑
n=0

δn{σ(n)
ij , ε

pl(n)
ij , ε

el(n)
ij , e

pl(n)
ij , . . .}.

The zero approximation corresponds to the axisymmetric state of a plane with a circular hole of radius R0,
and in polar coordinates (r, θ), according to [8], it takes the following form:

— in the plastic region (R0 < r < 1),

σ(0)
r = −q0 +

4χµ

2µ + c

[c + 2µ e−αt

4µ

( 1
R2

0

− 1
r2

)
+ (1− e−αt) ln

r

R0

]
,

σ
(0)
θ = −q0 +

4χµ

2µ + c

[c + 2µ e−αt

4µ

( 1
R2

0

+
1
r2

)
+ (1− e−αt)

(
1 + ln

r

R0

)]
, (8)

ε
pl(0)
θ = −εpl(0)

r =
χ(1− e−αt)

2µ + c

( 1
r2
− 1

)
,

where µ is the shear modulus, χ = sign (q0 − gh), and α = (2µ + c)/η;
— in the elastic range (1 < r < ∞),

σ(0)
r = −gh− 1

r2
, σ

(0)
θ = −gh +

1
r2

, ε
pl(0)
θ = −εpl(0)

r =
χ

2µr2
. (9)

The equation for the radius γ(0) of the elastoplastic boundary in the rock mass has the form

|q0 − gh|(2µ + c)− 2µ + 4µ lnR0(1− e−αt)− (2µ e−αt +c)/R2
0 = 0. (10)
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According to [8], the first approximation is written as follows:
— in the plastic region (R0 < r < 1),

σ(1)
r =

m1

2

( 1
R2

0

− 1
r2
− 2 ln

r

R0

)
+

2AR0d
′

r
(
√

B2 − 1 sinφ1 − cos φ1) cos Bθ,

σ
(1)
θ =

m1

2

( 1
R2

0

+
1
r2
− 2− 2 ln

r

R0

)
+

2AR0d
′

r
(
√

B2 − 1 sinφ1 − cos φ1) cos Bθ,

τ
(1)
rθ = −2m1AR0d

′

r
cos φ′1 sinBθ, (11)

ε
pl(1)
θ =

m1

2µ

(
1− 2a0 + 1

r2

)
− 1

r

{
B

√
B2 − 1 (c1 sinφ− c2 cos φ)

− AR0d
′

µ(2µ + c)

[
((1 + B2) cos φ1 −

√
B2 − 1 sin φ1)

µ(1− e−αt)
r2

+
B2(2 e−αt +c)√

B2 − 1
(sinφ1 +

√
B2 − 1 ln r cos φ1)

]}
sinBθ,

εpl(1)
r = −ε

pl(1)
θ .

Here

c1 =
AR0d

′

Bµ(2µ + c)(B2 − 1)
{µ(1− e−αt)(B2 − 1) cos φ0

+
√

B2 − 1 [µ(m2 − 1)(1− e−αt)−B(2µ + c)] sinφ0},

c2 =
AR0d

′

Bµ(2µ + c)(B2 − 1)
{
√

B2 − 1 [µ(1− e−αt)(B2 + 1)−m(2µ + c)] cos φ0

+ [B2(2µ e−αt +c) + (1− e−αt)(B2 − 1)µ] sinφ0},

A =
1

2µ + c

[
2µ(1− e−αt) +

c + 2µ e−αt

R2
0

]
, m1 =

2c

2µ + c
(1− e−αt) + 2 e−αt,

φ =
√

B2 − 1 ln r, φ1 =
√

B2 − 1 ln
r

R0
, φ0 =

√
B2 − 1 lnR0, a0 =

1
2

( 1
R2

0

− 1 + 2 lnR0

)
;

— in the elastic range (1 < r < ∞),

σ(1)
r =

m1a0

r2
− M

2

(B + 2
rB

− B

rB+2

)
+ N

(B + 2
rB+2

− B + 2
rB

)
cos Bθ,

σ
(1)
θ = −m1a0

r2
− M

2

( B

rB+2
− B − 2

rB

)
+ N

(B − 2
rB

− B + 2
rB+2

)
cos Bθ, (12)

τ
(1)
rθ =

M

2

( B

rB+2
− B

rB

)
−N

( B

rB
− B + 2

rB+2

)
sinBθ,

where M = 2AR0d
′(
√

m2 − 1 sin φ0 + cos φ0) and N = 2BAR0d
′ cos φ0.

The equation for the radius γ(1) of the elastoplastic boundary has the form

γ(1) = − (2µ + c)m1a0

4µ(1− e−αt)
+

2µ + c

2µ(1− e−2t)
BAR0d

′ cos φ0 cos Bθ. (13)

In (8)–(13), all quantities having the dimension of stresses are related to the yield strength k, and those
having the dimension of length to the radius γ(0) of the elastoplastic boundary in the unperturbed state.
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To determine the zero and first approximations of this problem, we used the equilibrium equations, the
plasticity state (1), the associate law of plastic flow (2), the relations linking the total elastic and plastic strains,
the general equations of elastic theory, boundary conditions, and joining conditions for the solutions in the elastic
and plastic regions.

Under the assumption of continuing loading [5] and incompressibility of the rock mass, Eqs. (3)–(7) are
a closed system of equations for studying the stability of the basic state (8)–(13) of a horizontal tunnels with a
polygonal cross section in the case where there is an interface between the regions of elastic and plastic behavior
of the material in the loaded rock mass. This is a system of partial differential equations for the displacement
vector component u, v, and w and the hydrostatic pressure p in the plastic and elastic zones of the rock mass. The
nontrivial solution of this problem corresponds to the loss of stability of the basic state. To find the eigenvalues
of the problem, we approximated the displacement and hydrostatic pressure in the zones of elastic and plastic
deformation of the rock mass by double trigonometric series:

u =
∞∑
n

∞∑
m

Anm(r) cos mθ cos nz, v =
∞∑
n

∞∑
m

Bnm(r) sinmθ cos nz,

w =
∞∑
n

∞∑
m

Cnm(r) cos mθ sinnz, p =
∞∑
n

∞∑
m

Dnm(r) cos mθ cos nz

(n and m are wave-formation parameters).
Substituting the functions u, v, and w, p into the linear stability equations (3) and taking into account (6)

and (7) and the incompressibility condition, after a number of transformations, we obtain the following infinite
system of ordinary differential equations for Anm and Bnm:

ξ1A(r) + ξ2A
′(r) + ξ3A

′′(r) + ξ4A
′′′(r) + ξ5A

IV (r) + ξ6B(r) + ξ7B
′(r) + ξ8B

′′(r) + ξ9B
′′′(r) = 0,

ξ10A(r) + ξ11A
′(r) + ξ12A

′′(r) + ξ13A
′′′(r) + ξ14B(r) + ξ15B

′(r) + ξ16B
′′(r) = 0. (14)

Here

ξ1 =
{

a2,r +
1
r

(a10,θ − a6)−
σ0

θ

r
(1 + m2) + rρω2 −m2a12 − n2µr

+
1
r

[
a7 − a11,θ − ra3,r +

1
n2

(3µ

r2
(1−m2)− 3m2

r2
σ0

θ +
m2

r
σ0

θ,r

+
1
r

(
rρω2 − 3

r
(τ0

rθ,θ − 3σ0
r)− 5σ0

r,r + rσ0
r,rr + τ0

rθ,rθ

))]}
cos mθ +

{
a4 − a12,θ + ra4,r − a8 − τ0

rθ,r

+
1
r

[
a11 − a10 − σ0

θ,θ +
1
n2

(6τ0
rθ

r2
− 4

r
τ0
rθ,r −

3
r2

σ0
θ,θ + τ0

rθ,rθ +
1
r

σ0
θ,θr

)]}
m sinmθ,

ξ2 =
{

a1 + a2 − 2a3 − a5 + a7 + r(a1,r − a3,r) + a9,θ − a11,θ − σ0
r + rσ0

r,r + τ0
rθ,θ

+
1
r

(λ + µ)− 1
n2

[ µ

r2
(3 + m2) +

m2

r2
σ0

θ −
m2

r
σ0

θ,r

+
1
r

(
rρω2 + rσ0

r,rr −
3
r

τ0
rθ,θ +

9
r

σ0
r + τ0

rθ,rθ − 5σ0
r,r

)]}
cos mθ

+
{

ra4 + a11 − a9 − 2τ0
rθ

(
1 +

3
r2n2

)
+

1
n2

[2τ0
rθ,r

r
− 1

r2
σ0

θ,θ + τ0
rθ,rθ +

1
r

σ0
θ,θr

]}
m sinmθ,

ξ3 =
{

r(a1 − a3 + σ0
r) + (r − 1)(λ + µ)

− 1
n2

[
rρω2 − µ

r
(m2 + 3)− m2

r
σ0

θ + σ0
r,r −

3
r

σ0
r + τ0

rθ,rθ + rσ0
r,rr

]}
cos mθ +

{1
r

σ0
θ,θr + 3τ0

rθ,r

} m

n2
sinmθ,
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ξ4 = − 1
n2
{2rσ0

r,r + 2µ + τ0
rθ,θ} cos mθ +

2m

n2
τ0
rθ sinmθ, ξ5 = −r(µ + σ0

r)
n2

cos mθ,

ξ6 =
{

a2,r − a12 +
1
r

[
a10,θ − a6 − 2σ0

θ − a11,θ + a7 − ra3,r

− 1
n2

( µ

r2
(5 + 3m2) +

3m2

r2
σ0

θ −
m2

r
σ0

θ,r + ρω2 − 3
r

σ0
r,r −

1
r2

τ0
rθ,θ

+
7
r2

σ0
r − σ0

r,rr −
1
r

τ0
rθ,rθ

)]}
m cos mθ +

{
ra4,r − a12,θ + a4 − a8 − τ0

rθ,r −
1
r

(σ0
θ,θ + m2(a10 − a11))

− m2

n2r

[ 2
r2

τ0
rθ +

4
r

τ0
rθ,r +

3
r2

σ0
θ,θ − τ0

rθ,rθ −
1
r

σ0
θ,θr

]}
sinmθ,

ξ7 =
{

a2 + ra12 − a3 −
1

rn2

[
rρω2 +

µ

r
(3−m2)− m2

r
σ0

θ + rσ0
r,rr

− 3
r

τ0
rθ,θ +

9
r

σ0
r − 5σ0

r,r + τ0
rθ,rθ

]}
m cos mθ

+
{

r
(
a12,θ − a4 + a8 − ra4,r −

2
r

τ0
rθ

)
− m2

n2r

(6
r

τ0
rθ − 3τ0

rθ,r −
1
r

σ0
θ,θ

)}
sinmθ,

ξ8 = − m

rn2

{
2rσ0

r,r − 2µ− 4σ0
r + τ0

rθ,θ

}
cos mθ +

{2m2

rn2
τ0
rθ − r2a4

}
sinmθ,

ξ9 = −m(µ + σ0
r)

n2
cos mθ, (15)

ξ10 = m
{

a8,θ − 2a12 − a12,r +
1
r

[
a7 − a6 − 2σ0

θ +
1

rn2

(
rρω2 +

µ

r
(1−m2)

− m2

r
σ0

θ − σ0
r,r −

1
r

(τ0
rθ,θ − 3σ0

r)
)]}

cos mθ sinmθ

+
{1

r

[
(a10 − a11)

(
2− 1

r

)
+ a10,r + a6,θ + rτ0

rθ,r + σ0
θ,θ − a11,r − a7,θ + rm2a8

]}
cos2 mθ

+
( m

rn

)2{1
r

(2τ0
rθ − σ0

θ,θ)− τ0
rθ,r

}
sin2 mθ,

ξ11 = m
{

a7 − a12 − a5 +
1
r

[
(λ + µ)(1− r)

+
1
n2

(
rρω2 − µ

r
(1 + m2)− m2

r
σ0

θ + σ0
r,r +

1
r

(τ0
rθ,θ − 3σ0

r)
)]}

cos mθ sinmθ

+
{

2τ0
rθ + 2a9 + a9,r +

1
r

a10,r + a5,θ − a11,r − a7,θ − a11

(
2 +

1
r

)}
cos2 mθ

− m2

rn2

{1
r

(2τ0
rθ + σ0

θ,θ) + τ0
rθ,r

}
sin2 mθ,

ξ12 =
m

rn2
{2µ + rσ0

r,r + τ0
rθ,θ} cos mθ sinmθ + {a9 − a11} cos2 mθ − 2m2

rn2
τ0
rθ sin2 mθ,

ξ13 =
m

n2
{µ + σ0

r} cos mθ sinmθ,

ξ14 =
{

a8,θ − 2a12 − a12,r + rρω2
(
1 +

( m

rn

)2)
− n2µr − 1

r
σ0

θ
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+
m2

r

[
a7 − a6 − σ0

θ +
1

rn2

(µ

r
(1−m2)− m2

r
σ0

θ − σ0
r,r −

1
r

(τ0
rθ,θ − 3σ0

r)
)]}

cos mθ sinmθ

+
m

r

{
(a10 − a11)

(
2− 1

r

)
+ a10,r + rτ0

rθ,r + σ0
θ,θ + a6,θ − a11,r − a7,θ + ra8

}
cos2 mθ

− m3

r3n2
{2τ0

rθ − σ0
θ,θ − rτ0

rθ,r} sin2 mθ,

ξ15 =
{

r
(
2a12 + a12,r − a8,θ + σ0

r,r +
1
r

(τ0
rθ,θ − σ0

r)
)

+
( m

rn

)2

(τ0
rθ,θ + rσ0

r,r − 3σ0
r − µ)

}
cos mθ sinmθ

+ m
{1

r
(a10 − a11)− ra8 + 2τ0

rθ} cos2 mθ − 2m3

r2n2
τ0
rθ sin2 mθ,

ξ16 =
m

n2

{
r(a12 + σ0

r) +
m2

rn2
(µ + σ0

r)
}

cos mθ sinmθ.

In this case, in the plastic region V pl in the rock mass, the precritical state is defined by formulas (8) and
(11), and in the elastic range V el, it is defined by formulas (9) and (12). For simplicity, in (14) and below, the
subscripts n and m at the quantities A and B are omitted.

For r = R0(1 + δ cos Bθ− (3/4)δ2d′2(1− cos 2Bθ + . . .)) (0 6 θ 6 2π), boundary conditions (4) on the inner
contour of the tunnel, in view of (6) and (7), become

Aϕ1 + A′ϕ2 + A′′ϕ3 + A′′′ϕ4 + Bϕ5 + B′ϕ6 + B′′ϕ7 = 0,

Aϕ8 + A′ϕ9 + Bϕ10 + B′ϕ11 = 0, (16)

Aϕ12 + A′ϕ13 + A′′ϕ14 + Bϕ15 + B′ϕ16 = 0,

where

ϕ1 = −1
r

{
a3 − a2 − µ +

1
rn2

[
rρω2 +

µ

r
(1−m2)− m2

r
σ0

θ +
1
r

(3σ0
r − τ0

rθ,θ − rσ0
r,r)

]}
cos mθ

+ m
{

a4 −
1
r

τ0
rθ

(
1 +

2
r2n2

)
+

1
n2r2

(
τ0
rθ,r +

1
r
σ0

θ,θ

)}
sinmθ,

ϕ2 =
{

a1 − a3 + σ0
r −

1
r

[
(1− r)(λ + µ) +

1
n2

(
rρω2 − µ

r
(m2 + 1 + n2r2)

− m2

r
σ0

θ +
1
r

(rσ0
r,r − 3σ0

r + τ0
rθ,θ)

)]}
cos mθ +

m

rn2

{1
r

σ0
θ,θr + τ0

rθ,r +
2
r

τ0
rθ

}
sinmθ,

ϕ3 = − 1
rn2

{rσ0
r,r + 2µ + τ0

rθ,θ} cos mθ +
2m

rn2
τ0
rθ sinmθ, ϕ4 = −µ + σ0

r

n2
cos mθ,

ϕ5 = −m

r

{
a3 − a2 − µ +

1
rn2

[
rρω2 +

µ

r
(1−m2)− m2

r
σ0

θ +
1
r

(3σ0
r − τ0

rθ,θ − rσ0
r,r)

]}
cos mθ

+
{

a4 −
1
r

τ0
rθ +

( m

nr

)2(
τ0
rθ,r +

1
r

σ0
θ,θ −

2
r

τ0
rθ

)}
sinmθ,

ϕ6 =
m

r2n2
{µ + 3σ0

r − rσ0
r,r − τ0

rθ,θ} cos mθ +
{

2
( m

rn

)2

τ0
rθ − ra4} sinmθ, (17)

ϕ7 = −m(µ + σ0
r)

rn2
cos mθ, ϕ8 =

1
r
{a10 − a11 + τ0

rθ,θ} cos mθ −ma12 sinmθ,

ϕ9 = {a9 − a11} cos mθ, ϕ10 =
m

r
{a10 − a11 + τ0

rθ,θ} cos mθ − a12 sinmθ,
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Fig. 1. Critical pressure on the tunnel contour versus hydrostatic pressure gh (η = 0.001) for c = 0.9
(1), 0.1 (2), and 0.01 (3).

ϕ11 = {ra12 + σ0
r} sinmθ, ϕ12 =

{
nµ− µ + σ0

r

nr2

}
cos mθ − m

nr2
τ0
rθ sinmθ,

ϕ13 =
µ + σ0

r

nr
cos mθ − m

nr
τ0
rθ sinmθ, ϕ14 =

µ + σ0
r

nr
cos mθ,

ϕ15 = −m(µ + σ0
r)

nr2
cos mθ − m2

nr2
τ0
rθ sinmθ, ϕ16 =

m(µ + σ0
r)

nr
cos mθ.

In view of (6) and (7), the stress continuity conditions (5) on the elastoplastic boundary γ = γ(0) + δγ(1)

(0 6 θ 6 2π) are written as

Aplζ1 + A′pζ2 + A′′pϕpl
3 −A′′eϕel

3 + A′′′pϕpl
4 −A′′′pϕpl

4 + Bplζ5 + B′pζ6 + B′′pϕpl
7 −B′′eϕel

7 = 0,

Aplζ8 + A′pζ9 + Bplζ10 + B′pζ11 = 0, (18)

Aplζ12 + A′pζ13 + A′′pϕpl
14 −A′′eϕel

14 + Bplζ15 + B′pζ16 = 0,

where ζi = ϕpl
i − ϕel

i (i = 1, 2, . . . , 16).
The condition of localization of the perturbations uj → 0 as r →∞ (j = 1, 2, 3) implies that

(A′)el = 0, (A′′)el = 0, (B′)el = 0, (B′′)el = 0. (19)

Since it is not possible to find the exact analytical solution of the boundary-value problem (14)–(19), we
seek an approximate solution using the finite difference method [9]. The method is based on the replacement of the
derivatives of the functions A(r) and B(r) by finite-difference expressions. As a result, we obtain a homogeneous
system of algebraic equations linear in the parameters Anm and Bnm. From this it follows that the determination
of the critical load q0 corresponding to local buckling of a horizontal tunnel with a polygonal cross section reduces
to solving a matrix equation. In the calculation of the determinant, along with finding the basic stress–strain
state for each region V pl, V el of the rock mass (8), (11), (9), (12), it is necessary to take into account Eqs. (10)
and (13), which define the position of the elastoplastic boundary γ in the rock mass. Minimization should be
performed for the difference-grid size, the wave-formation parameters along the contour m and the generatrix n,
and the material and design parameters λj . Thus, we obtain the problem of multidimensional optimization of the
quantity q0 as a function of m and n provided that the determinant of the resulting algebraic system is equal to
zero: det (q0,m, n, λj) = 0.

The calculations were performed for the case where the rock mass contained a tunnel having a cross section
in the shape of a square (B = 4) with rounded angles. Figures 1–3 show the critical pressure on the tunnel
contour versus hydrostatic pressure gh. It was assumed in this case that R0 = 0.4, δ = 0.06, and µ = 1 and the
wave-formation parameters n = m = 4.
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Fig. 2. Critical pressure on the tunnel contour versus gh for c = 0.1 and η = 0.001 (1), 0.01 (2),
and 0.1 (3).

Fig. 3. Critical pressure on the tunnel contour versus gh for c = 0.9 and η = 0.001: curves 1 and 2
refer to a tunnel in the shape of a regular tetragon with rounded angles (B = 4) and circle (B = 60),
respectively.

An analysis of the numerical experiment shows that:
— The critical pressure on the tunnel contour increases with increase in the depth of tunnel location (see Figs. 1–3);
— the critical pressure on the tunnel contour increases with increase in the hardening coefficient c (see Fig. 1);
— the buckling load on the tunnel contour decreases with increase in the viscosity; in this sense, it is possible to
speak of the stabilizing role of viscosity in the medium (see Fig. 2);
— the stability region is larger for a circular cylindrical tunnel than for a tunnel with a square cross section (see
Fig. 3).

Setting δ = 0 in relations (8)–(13), we arrive at the results obtained in [4] for a circular cylindrical tunnel.
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